Problem 2.15

Find the electric field inside a sphere that carries a charge density proportional to the distance from the center, $\rho=k r$, for some constant k. [Caution: This charge density is not uniform, and you must integrate to get the enclosed charge.]

Solution

One of the governing equations for the electric field in vacuum is Gauss's law.

$$
\nabla \cdot \mathbf{E}=\frac{\rho}{\epsilon_{0}}
$$

Normally the curl of \mathbf{E} is also necessary to determine \mathbf{E}, but because of the spherical symmetry, the divergence is sufficient. Suppose the sphere has radius R and integrate both sides over the volume of a (black) concentric spherical Gaussian surface with radius r. Two cases need to be considered: (1) $r<R$ and (2) $r>R$.

Gaussian Surface with $r>R$

$$
\begin{aligned}
\iiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \nabla \cdot \mathbf{E} d V_{0} & =\iiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \frac{\rho}{\epsilon_{0}} d V_{0} \\
& =\frac{1}{\epsilon_{0}} \iiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2} \leq r^{2}} \rho d V_{0} \\
& =\left\{\begin{array}{lll}
\frac{1}{\epsilon_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{r} k r_{0}\left(r_{0}^{2} \sin \theta_{0} d r_{0} d \phi_{0} d \theta_{0}\right) \quad \text { if } r<R \\
\frac{1}{\epsilon_{0}} \int_{0}^{\pi} \int_{0}^{2 \pi} \int_{0}^{R} k r_{0}\left(r_{0}^{2} \sin \theta_{0} d r_{0} d \phi_{0} d \theta_{0}\right) & \text { if } r>R
\end{array}\right. \\
& =\left\{\begin{array}{lll}
\frac{k}{\epsilon_{0}}\left(\int_{0}^{\pi} \sin \theta_{0} d \theta_{0}\right)\left(\int_{0}^{2 \pi} d \phi_{0}\right)\left(\int_{0}^{r} r_{0}^{3} d r_{0}\right) & \text { if } r<R \\
\frac{k}{\epsilon_{0}}\left(\int_{0}^{\pi} \sin \theta_{0} d \theta_{0}\right)\left(\int_{0}^{2 \pi} d \phi_{0}\right)\left(\int_{0}^{R} r_{0}^{3} d r_{0}\right) & \text { if } r>R
\end{array}\right.
\end{aligned}
$$

Apply the divergence theorem on the left side and evaluate the integrals on the right side.

$$
\oiint_{x_{0}^{2}+y_{0}^{2}+z_{0}^{2}=r^{2}} \mathbf{E} \cdot d \mathbf{S}_{0}= \begin{cases}\frac{k}{\epsilon_{0}}(2)(2 \pi)\left(\frac{r^{4}}{4}\right) & \text { if } r<R \\ \frac{k}{\epsilon_{0}}(2)(2 \pi)\left(\frac{R^{4}}{4}\right) & \text { if } r>R\end{cases}
$$

Because of the spherical symmetry, the electric field is expected to be entirely radial: $\mathbf{E}=E(r) \hat{\mathbf{r}}$. Note also that the direction of $d \mathbf{S}$ is the outward unit vector to the Gaussian surface.

$$
\oiint_{r_{0}^{2}=r^{2}}\left[E\left(r_{0}\right) \hat{\mathbf{r}}_{0}\right] \cdot\left(\hat{\mathbf{r}}_{0} d S_{0}\right)= \begin{cases}\frac{\pi k}{\epsilon_{0}} r^{4} & \text { if } r<R \\ \frac{\pi k}{\epsilon_{0}} R^{4} & \text { if } r>R\end{cases}
$$

Evaluate the dot product.

$$
\oiint_{r_{0}=r} E(r) d S_{0}= \begin{cases}\frac{\pi k}{\epsilon_{0}} r^{4} & \text { if } r<R \\ \frac{\pi k}{\epsilon_{0}} R^{4} & \text { if } r>R\end{cases}
$$

$E(r)$ is constant on the spherical Gaussian surface, so it can be pulled in front of the integral.

$$
E(r) \oiint_{r_{0}=r} d S_{0}= \begin{cases}\frac{\pi k}{\epsilon_{0}} r^{4} & \text { if } r<R \\ \frac{\pi k}{\epsilon_{0}} R^{4} & \text { if } r>R\end{cases}
$$

Evaluate the surface integral.

$$
E(r)\left(4 \pi r^{2}\right)= \begin{cases}\frac{\pi k}{\epsilon_{0}} r^{4} & \text { if } r<R \\ \frac{\pi k}{\epsilon_{0}} R^{4} & \text { if } r>R\end{cases}
$$

Solve for $E(r)$.

$$
E(r)= \begin{cases}\frac{k}{4 \epsilon_{0}} r^{2} & \text { if } r<R \\ \frac{k}{4 \epsilon_{0}} \frac{R^{4}}{r^{2}} & \text { if } r>R\end{cases}
$$

Therefore, the electric field around the solid ball with charge density $\rho=k r$ is

$$
\mathbf{E}=\left\{\begin{array}{ll}
\frac{k}{4 \epsilon_{0}} r^{2} \hat{\mathbf{r}} & \text { if } r<R \\
\frac{k}{4 \epsilon_{0}} \frac{R^{4}}{r^{2}} \hat{\mathbf{r}} & \text { if } r>R
\end{array} .\right.
$$

